G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.Sc., PHYSICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
III	PART - III	CORE-3	U23PH303	MECHANICS

Date & Session: 09.11.2024/AN Time: 3 hours Maximum: 75 Marks

Course Outcome	Bloom's K-level	Q. No.		<u> </u>	(10 X 1 = 10 Marks) <u>ALL</u> Questions.	
CO1	K1	1.		ct statement in ance between tw b) $F \propto 1/r$	the following. Where ro mass objects. c) $F \propto r^2$	F = Gravitational d) F $\propto 1/r^2$
CO1	K2	2.	What is the sharal a) square	pe of the orbit of b) circle		d) sphere
CO2	K1	3.	Which of the following particle? a) mv	lowing expressions b) r x F	n defines linear mome c) dp/dt	entum of a d) r x P
CO2	K2	4.	Choose the expr a) $R=\sum m_i r_i / \sum m_i$		on of a Centre of Mass c) $R=\sum m_i r_i^2/\sum m_i$	
CO3	K1	5.	Choose the SI u a) Joule/s	nit of Energy. b) Joule	c) Watt	d) Calorie
CO3	K2	6.	Select the expre a) Force x Distar c) Energy / Time		one. b) Force / Distance d) Force / Time	
CO4	K1	7.	Choose the general mr	eral expression for b) mr ²	or moment of inertia. c) mr ³	d)(mr) ^{1/2}
CO4	K2	8.	Select the expre a) Iω	ssion for kinetic b) Iω/2	energy of rotation. c) $I\omega^2$	d) Iω ² /2
CO5	K1	9.		nber of degrees of freely in a plane. b) 2	of freedom required to c) 3	specify position a d) 4
CO5	K2	10.	Choose the general pendulum. a) θ	eralized coordina b) 1	tes required to descri	be simple d) m

Course Outcome	Bloom's K-level	Q. No.	SECTION - B (5 X 5 = 25 Marks) Answer ALL Questions choosing either (a) or (b)
CO1	К3	11a.	Write Newton's Laws with real life examples. (OR)
CO1	КЗ	11b.	Find the Mass and density of the Earth.
CO2	КЗ	12a.	Build Newton's second law of motion for system of particles. (OR)
CO2	КЗ	12b.	Develop conservation theorem for angular momentum of a system of particles.
CO3	K4	13a.	Distinguish conservative and non-conservative forces. (OR)
CO3	K4	13b.	Distinguish work, power and energy.
CO4	K4	14a.	Compare the analogy between translatory and rotatory motion (OR)
CO4	K4	14b.	Inspect Moment of inertia of a thin uniform bar.
CO5	K5	15a.	Appraise the principle of virtual work. (OR)
CO5	K5	15b.	Deduce Newton's equation of motion from Lagrange's Equation.

Course Outcome	Bloom's K-level	Q. No.	SECTION - C (5 X 8 = 40 Marks) Answer ALL Questions choosing either (a) or (b)
CO1	К3	16a.	Find gravitation potential at a point (i) outside the sphere (ii) on the surface due to a uniform solid sphere. (OR)
CO1	КЗ	16b.	Find the expression for escape velocity of an object at earth.
CO2	K4	17a.	Obtain the relation for the velocity of the rocket at any instant of time. (OR)
CO2	K4	17b.	Examine the velocities of two smooth spheres of different masses making elastic direct collision.
CO3	K4	18a.	Correlate conservative force and potential energy. (OR)
CO3	K4	18b.	Examine the work-energy theorem of a particle.
CO4	K5	19a.	Justify perpendicular and parallel axis theorems. (OR)
CO4	K5	19b.	Deduce the expression for acceleration of a body rolling down an inclined plane.
CO5	K5	20a.	Obtain the Lagrange's equation from D' Alembert's principle. (OR)
CO5	K5	20b.	Obtain the Equation of motion of a simple pendulum using Lagrangian method.